Source code for pyspline.utils

# External modules
import numpy as np
from scipy import sparse

# Local modules
from . import libspline


[docs] class Error(Exception): """ Format the error message in a box to make it clear this was a explicitly raised exception. """ def __init__(self, message): msg = "\n+" + "-" * 78 + "+" + "\n" + "| pySpline Error: " i = 17 for word in message.split(): if len(word) + i + 1 > 78: # Finish line and start new one msg += " " * (78 - i) + "|\n| " + word + " " i = 1 + len(word) + 1 else: msg += word + " " i += len(word) + 1 msg += " " * (78 - i) + "|\n" + "+" + "-" * 78 + "+" + "\n" print(msg) Exception.__init__()
[docs] def writeTecplot1D(handle, name, data, solutionTime=None): """A Generic function to write a 1D data zone to a tecplot file. Parameters ---------- handle : file handle Open file handle name : str Name of the zone to use data : array of size (N, ndim) 1D array of data to write to file SolutionTime : float Solution time to write to the file. This could be a fictitious time to make visualization easier in tecplot. """ nx = data.shape[0] ndim = data.shape[1] handle.write('Zone T="%s" I=%d\n' % (name, nx)) if solutionTime is not None: handle.write("SOLUTIONTIME=%f\n" % (solutionTime)) handle.write("DATAPACKING=POINT\n") for i in range(nx): for idim in range(ndim): handle.write("%f " % (data[i, idim])) handle.write("\n")
[docs] def writeTecplot2D(handle, name, data, solutionTime=None): """A Generic function to write a 2D data zone to a tecplot file. Parameters ---------- handle : file handle Open file handle name : str Name of the zone to use data : 2D np array of size (nx, ny, ndim) 2D array of data to write to file SolutionTime : float Solution time to write to the file. This could be a fictitious time to make visualization easier in tecplot. """ nx = data.shape[0] ny = data.shape[1] ndim = data.shape[2] handle.write('Zone T="%s" I=%d J=%d\n' % (name, nx, ny)) if solutionTime is not None: handle.write("SOLUTIONTIME=%f\n" % (solutionTime)) handle.write("DATAPACKING=POINT\n") for j in range(ny): for i in range(nx): for idim in range(ndim): handle.write("%20.16g " % (data[i, j, idim])) handle.write("\n")
[docs] def writeTecplot3D(handle, name, data, solutionTime=None): """A Generic function to write a 3D data zone to a tecplot file. Parameters ---------- handle : file handle Open file handle name : str Name of the zone to use data : 3D np array of size (nx, ny, nz, ndim) 3D array of data to write to file SolutionTime : float Solution time to write to the file. This could be a fictitious time to make visualization easier in tecplot. """ nx = data.shape[0] ny = data.shape[1] nz = data.shape[2] ndim = data.shape[3] handle.write('Zone T="%s" I=%d J=%d K=%d\n' % (name, nx, ny, nz)) if solutionTime is not None: handle.write("SOLUTIONTIME=%f\n" % (solutionTime)) handle.write("DATAPACKING=POINT\n") for k in range(nz): for j in range(ny): for i in range(nx): for idim in range(ndim): handle.write("%f " % (data[i, j, k, idim])) handle.write("\n")
def _writeHeader(f, ndim): """Write tecplot zone header depending on spatial dimension""" if ndim == 1: f.write('VARIABLES = "CoordinateX"\n') elif ndim == 2: f.write('VARIABLES = "CoordinateX", "CoordinateY"\n') else: f.write('VARIABLES = "CoordinateX", "CoordinateY", "CoordinateZ"\n')
[docs] def openTecplot(fileName, ndim): """A Generic function to open a Tecplot file to write spatial data. Parameters ---------- fileName : str Tecplot filename. Should have a .dat extension. ndim : int Number of spatial dimensions. Must be 1, 2 or 3. Returns ------- f : file handle Open file handle """ f = open(fileName, "w") _writeHeader(f, ndim) return f
[docs] def closeTecplot(f): """Close Tecplot file opened with openTecplot()""" f.close()
def _assembleMatrix(data, indices, indptr, shape): """ Generic assemble matrix function to create a CSR matrix Parameters ---------- data : array Data values for matrix indices : int array CSR type indices indptr : int array Row pointer shape : tuple-like Actual shape of matrix Returns ------- M : scipy csr sparse matrix The assembled matrix """ M = sparse.csr_matrix((data, indices, indptr), shape) return M
[docs] def checkInput(inputVal, inputName, dataType, dataRank, dataShape=None): """This is a generic function to check the data type and sizes of inputs in functions where the user must supply proper values. Since Python does not do type checking on Inputs, this is required Parameters ---------- input : int, float, or complex The input argument to check inputName : str The name of the variable, so it can be identified in an Error message dataType : str Numpy string dtype code dataRank : int Desired rank. 0 for scalar, 1 for vector 2 for matrix etc dataShape : tuple The required shape of the data. Scalar is denoted by () Vector is denoted by (n, ) where n is the shape Matrix is denoted by (n, m) where n and m are rows/columns Returns ------- output : various The input transformed to the correct type and guaranteed to the desired size and shape. """ # Check the data rank: rank = np.ndim(inputVal) if rank != dataRank: raise Error("'%s' must have rank %d. Input was of rank %d." % (inputName, dataRank, rank)) # Check the data type inputVal = np.array(inputVal) tmp = inputVal.astype(dataType) # Check if the values are the same: diff = (tmp - inputVal).flatten() if np.dot(diff, diff) > 10 * np.finfo(1.0).eps: raise Error("'%s' could not be safely cast to required type without losing information" % inputName) # Finally check that the shape is correct: if dataShape is not None: if tmp.shape != tuple(dataShape): raise Error( "'%s' was not the correct shape. Input was shape " "%s while requested dataShape was '%s'." % (inputName, repr(tmp.shape), repr(dataShape)) ) if dataRank == 0: return tmp.squeeze() else: return tmp
[docs] def trilinearVolume(*args): """This is a short-cut function to create a trilinear b-spline volume. It can be created with ``x`` **OR** with ``xmin`` and ``xmax``. Parameters ---------- x : array of size (2, 2, 2, 3) Coordinates of the corners of the box. xmin : array of size (3) The extreme lower corner of the box xmax : array of size (3) The extreme upper corner of the box. In this case, by construction, the box will be coordinate axis aligned. """ # Local modules from .pyVolume import Volume tu = [0, 0, 1, 1] tv = [0, 0, 1, 1] tw = [0, 0, 1, 1] ku = 2 kv = 2 kw = 2 if len(args) == 1: return Volume(coef=args[0], tu=tu, tv=tv, tw=tw, ku=ku, kv=kv, kw=kw) elif len(args) == 2: xmin = np.array(args[0]).astype("d") xmax = np.array(args[1]).astype("d") xLow = xmin[0] xHigh = xmax[0] yLow = xmin[1] yHigh = xmax[1] zLow = xmin[2] zHigh = xmax[2] coef = np.zeros((2, 2, 2, 3)) coef[0, 0, 0, :] = [xLow, yLow, zLow] coef[1, 0, 0, :] = [xHigh, yLow, zLow] coef[0, 1, 0, :] = [xLow, yHigh, zLow] coef[1, 1, 0, :] = [xHigh, yHigh, zLow] coef[0, 0, 1, :] = [xLow, yLow, zHigh] coef[1, 0, 1, :] = [xHigh, yLow, zHigh] coef[0, 1, 1, :] = [xLow, yHigh, zHigh] coef[1, 1, 1, :] = [xHigh, yHigh, zHigh] return Volume(coef=coef, tu=tu, tv=tv, tw=tw, ku=ku, kv=kv, kw=kw) else: raise Error("An unknown number of arguments was passed to trilinear Volume")
[docs] def bilinearSurface(*args): """This is short-cut function to create a bilinear surface. Args can contain: 1. ``x`` array of size(4, 3). The four corners of the array arranged in the coordinate direction orientation:: 2 3 +----------+ | | | | | | +----------+ 0 1 2. ``p1``, ``p2``, ``p3``, ``p4``. Individual corner points in CCW Ordering:: 3 2 +----------+ | | | | | | +----------+ 0 1 """ # Local modules from .pySurface import Surface if len(args) == 1: # One argument passed in ... assume its X if len(args[0]) != 4: raise Error("A single argument passed to bilinear surface must contain 4 points and be of size (4, 3)") coef = np.zeros((2, 2, 3)) coef[0, 0] = args[0][0] coef[1, 0] = args[0][1] coef[0, 1] = args[0][2] coef[1, 1] = args[0][3] return Surface(coef=coef, tu=[0, 0, 1, 1], tv=[0, 0, 1, 1], ku=2, kv=2) else: # Assume 4 arguments coef = np.zeros([2, 2, 3]) coef[0, 0] = args[0] coef[1, 0] = args[1] coef[0, 1] = args[3] coef[1, 1] = args[2] return Surface(coef=coef, tu=[0, 0, 1, 1], tv=[0, 0, 1, 1], ku=2, kv=2)
[docs] def line(*args, **kwargs): """This is a short cut function to create a line as a pySpline Curve object. Args can contain: (pick one) 1. ``X`` array of size(2, ndim). The two end points 2. ``x1``, ``x2`` The two end points (each of size ndim) 3. ``x```, dir=direction. A point and a displacement vector 4. ``x1``, dir=direction, length=length. As 3. but with a specific length """ # Local modules from .pyCurve import Curve if len(args) == 2: # Its a two-point type return Curve(coef=[args[0], args[1]], k=2, t=[0, 0, 1, 1]) elif len(args) == 1: if len(args[0]) == 2: # its X return Curve(coef=args[0], k=2, t=[0, 0, 1, 1]) elif "dir" in kwargs: # We have point and direction if "length" in kwargs: x2 = args[0] + kwargs["dir"] / np.linalg.norm(kwargs["dir"]) * kwargs["length"] else: x2 = args[0] + kwargs["dir"] return Curve(coef=[args[0], x2], k=2, t=[0, 0, 1, 1]) else: Error("Error: dir must be specified if only 1 argument is given")
[docs] def plane_line(ia, vc, p0, v1, v2): """ Check a plane against multiple lines Parameters ---------- ia : ndarray[3, n] initial point vc : ndarray[3, n] search vector from initial point p0 : ndarray[3] vector to triangle origins v1 : ndarray[3] vector along first triangle direction v2 : ndarray[3] vector along second triangle direction Returns ------- sol : ndarray[6, n] Solution vector - parametric positions + physical coordiantes nSol : int Number of solutions """ return libspline.plane_line(ia, vc, p0, v1, v2)
[docs] def tfi2d(e0, e1, e2, e3): """ Perform a simple 2D transfinite interpolation in 3D. Parameters ---------- e0 : ndarray[3, Nu] coordinates along 0th edge e1 : ndarray[3, Nu] coordinates along 1st edge e2 : ndarray[3, Nv] coordinates along 2nd edge e3 : ndarray[3, Nv] coordinates along 3rd edge Returns ------- X : ndarray[3 x Nu x Nv] evaluated points """ return libspline.tfi2d(e0, e1, e2, e3)
[docs] def line_plane(ia, vc, p0, v1, v2): r""" Check a line against multiple planes. Solve for the scalars :math:`\alpha, \beta, \gamma` such that .. math:: i_a + \alpha \times v_c &= p_0 + \beta \times v_1 + \gamma \times v_2 \\ i_a - p_0 &= \begin{bmatrix}-v_c & v_1 & v_2\end{bmatrix}\begin{bmatrix}\alpha\\\beta\\\gamma\end{bmatrix}\\ \alpha &\ge 0: \text{The point lies above the initial point}\\ \alpha &< 0: \text{The point lies below the initial point} The domain of the triangle is defined by .. math:: \beta + \gamma = 1 and .. math:: 0 < \beta, \gamma < 1 Parameters ---------- ia : ndarray[3] initial point vc : ndarray[3] search vector from initial point p0 : ndarray[3, n] vector to triangle origins v1 : ndarray[3, n] vector along first triangle direction v2 : ndarray[3, n] vector along second triangle direction Returns ------- sol : real ndarray[6, n] Solution vector---parametric positions + physical coordinates pid : int ndarray[n] Id for a given solution nSol : int Number of solutions """ return libspline.line_plane(ia, vc, p0, v1, v2)
[docs] def searchQuads(pts, conn, searchPts): """ This routine searches for the closest point on a set of quads for each searchPt. An ADT tree is built and used for the search and subsequently destroyed. Parameters ---------- pts : ndarray[3, nPts] points defining the quad elements conn : ndarray[4, nConn] local connectivity of the quad elements searchPts : ndarray[3, nSearchPts] set of points to search for Returns ------- faceID : ndarray[nSearchPts] index of the quad elements, one for each search point uv : ndarray[2, nSearchPts] parametric ``u`` and ``v`` weights of the projected point on the closest quad """ return libspline.adtprojections.searchquads(pts, conn, searchPts)